Quasi-Interpolation Functionals on Spline Spaces
نویسندگان
چکیده
منابع مشابه
Effortless quasi-interpolation in hierarchical spaces
We present a general and simple procedure to construct quasi-interpolants in hierarchical spaces, which are composed of a hierarchy of nested spaces. The hierarchical quasi-interpolants are described in terms of the truncated hierarchical basis. Once for each level in the hierarchy a quasi-interpolant is selected in the corresponding space, the hierarchical quasi-interpolants are obtained witho...
متن کاملQuasi-interpolation in shift invariant spaces
Let s ≥ 1 be an integer, φ : Rs → R be a compactly supported function, and S(φ) denote the linear span of {φ(· − k) : k ∈ Zs}. We consider the problem of approximating a continuous function f : Rs → R on compact subsets of Rs from the classes S(φ(h·)), h > 0, based on samples of the function at scattered sites in R s. We demonstrate how classical polynomial inequalities lead to the construction...
متن کاملOn bounding spline interpolation
as a function of s at the k+ 1 points ti, . . . , ti+k. The elements of $k,t are called polynomial splines of order k with knot sequence t. Let τ := (τi) n 1 be a strictly increasing real sequence. As is shown in [12], there exists, for given f , exactly one s ∈ $k,t, such that s(τi) = f(τi), i = 1, . . . , n, if and only if Ni,k(τi) 6= 0, i = 1, . . . , n, i.e., if and only if ti < τi < ti+k, ...
متن کاملB-Spline Interpolation on Lattices
4 Generalized and Optimized Spline Calculation 8 4.1 Multidimensional Array Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 Condensing Matrix Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 Eliminating Nested Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4 Reduction of Product Tens...
متن کاملSampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation
Let Xn = {x j }j=1 be a set of n points in the d-cube Id := [0, 1]d , and n = {φ j }j=1 a family of n functions on Id . We consider the approximate recovery of functions f on Id from the sampled values f (x1), . . . , f (xn), by the linear sampling algorithm Ln(Xn, n, f ) := ∑nj=1 f (x j )φ j . The error of sampling recovery is measured in the norm of the space Lq(I)-norm or the energy quasi-no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1994
ISSN: 0021-9045
DOI: 10.1006/jath.1994.1020